

Wrought copper-silver alloy CUAg (CUAg0.10P) alloy 0120

CuAg has a very high electrical conductivity and, compared to pure copper, a significantly improved tempering resistance and improved creep behaviour at elevated temperatures. The low phosphorus addition for deoxidation results in good weldability and brazeability as well as hydrogen resistance.

CuAg	ZOLLERN brand
CuAg0.10P	EN designation
CW016A	EN material no:

EN 12420:1999 (CW008A Forging) EN 13601:2013 round, square EN 13605:2013 other profiles

// National designations / ISO	
DIN	CuAg0.1P
DIN	2.1191
ISO	CuAg0.1(P)
USA	C10700

// Composition (weight by per cent in %)					
Cu		Ag	Bi	Р	Other
	Rest	0.08 – 0.12	< 0.0005	0.001 – 0.007	< 0.03

oxygen content is very low, the risk of hydrogen embrittlement does not exist. Verification according to EN ISO 2626 or ASTM B577

// Strength properties at room temperature				
(minimum values)			5)	
[1] EN 12420:1999 !!! (as CW008A) [2] EN 13601:2013 cold drawn [2] Values also for forgings [3] EN 13605:2013 min. 200 Kg	R _{p0.2} N/mm²	R _m N/mm²	A₅ %	НВ
[1] Forgings and die forgings (F20)	40	200	35	40
[2] Soft (F20) Medium hard (F22) Hard (F25) (< Ø120mm)	<120 160 220	200 220 ¹⁾ 250 ¹⁾	35 18 12	
[3] drawn profiles < 10 mm F24 drawn profiles < 5 mm F28	160 240	240 280	15 8	65 – 95 80 – 115

¹⁾ Deviating from standard EN 13601 10 N/mm² lower ²⁾ Hardness values may deviate slightly +- 10 HB

// Strength properties at elevated temperatures (reference values)						
Temperature	°C	20	200	300	400	500
0.2% limit	R _{p0,2} N//mm ²	48	45	45	37	32
Tensile strength	R _m N/mm²	225	181	162	147	108
Elongation	A5 %	53	47	45	44	42

	// Physical properties
8.9 kg/dm³	Density at 20 °C
1082 °C	Melting temperature/range
	Coefficient of linear expansion
14 x 10 ⁻⁶ °C ⁻¹	from - 200° to 20°C
17 x 10 ⁻⁶ °C ⁻¹	from 20° to 100°C
18 x 10 ^{.6} °C ^{.1}	from 20° to 300°C
3.94 W/cm x°C	Thermal conductivity at 20°C
> 57.0 MS/m > 98 % IACS > 56.0 MS/m > 96 % IACS	Electr. conductivity at 20°C (with higher strength from F22)
< 0.0175 Ω mm²/m	Electr. resistance at 20°C (F20)
0.00393 °C ¹	Temperature coefficient of the electrical resistance (0 - 100°C)
< 1.01	Permeability
124 KN/mm ²	Young's modulus

// Dynamic strength values at room temperature (reference values) Rotational bending fatigue strength Rbw at 10⁶ load cycles, 50% cold-formed 103 N/mm² Notched impact energy (ISO - V/KV) - joules

Wrought copper-silver alloy CUAg (CUAg0.10P) alloy 0120

CUAg has a very high electrical conductivity and, compared to pure copper, a significantly improved tempering resistance and improved creep behaviour at elevated temperatures. The low phosphorus addition for deoxidation results in good weldability and brazeability as well as hydrogen resistance.

Surface treatment

Areas of application Due to the high electrical and thermal conductivity as	Relaxation annealing	200 – 275°C
well as the improved tempering resistance and creep behaviour compared to SE-Cu, CuAg is used primarily in	Soft annealing	400 – 650°C
 electrical engineering with simultaneous thermal stress. Examples are 	Soft soldering	very good
profile bars for commutator bars, short-circuit bars, collector rings or contacts.	Brazing	very good
 Continuous casting moulds for non-ferrous metals and steel also benefit from the improved tempering resistance, as do forged parts for jet drives. 	Welding	Due to the high thermal conductivity preheating up to approx. 600°C is necessary for larger
The improvement in creep behaviour is shown following comparison.		pieces, no danger of hydrogen brittleness

// Experimental conditions	// Creep extension
Stress 96.5 N/mm² Temperature 175°C Test time 1000 h	1.12 % for SE-Cu 0.09 % for Cu Ag 0.10 P

Machinability

CuAg has very good hot and cold formability. All common types of semi-finished products such as bars, bushings, rings or open-die and drop forgings can be produced.

The machinability in the soft state is classified as moderate to poor, as long flow chips form due to the high toughness of the material.

Cold forming achieves a hardness of up to over 100 HB for thin rods or tubes, and 65-90 HB for forgings, depending on the cross-section and shape of the part. From a wall thickness of approximately 120 mm, the core areas are softer after strain hardening.

All information is given to the best of our knowledge. This does not constitute a guarantee of properties. Our liability shall be determined in accordance with the individual contractual provisions or our general terms and conditions.

easily galvanisable

ZOLLERN GmbH & Co. KG

Hitzkofer Strasse 1 72517 Sigmaringendorf-Laucherthal Germany T +49 7571 70-984 F +49 7571 70-82984 zgm@zollern.com www.zollern.com